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Smartphones, Cars, Wearable Electronics and many other form of devices which 
we use today are transmitting telemetry data  and s ensor reading to cloud 
s ervices . 

With such data  in hand the cloud s ervices  can gather useful aggregate s ta tis tics  
over the entire population of devices . 

Example: 

Navigation app providers  collect real-time location data  from their users  to identify 
areas  of trac conges tion in a  city and route drivers  a long the leas t-crowded roads .

Fitnes s  tracking s ervices  collect information on their users ’ phys ical activity so 
that each user can s ee how her fitnes s  regimen compares  to the average 



BUT ! !

Motivated Attackers  may s teal and dis close client’s  s ens itive information. 

Cloud Services  may misuse the client’s  information for profit. 

Intelligence agencies  may gather data  for targeting or for mass  surveillance 
purposes . 



How Do We Protect our Data from these Attackers ? 

Apple and Google fight such a ttacks  by deploying privacy - preserving techniques  
which use ‘randomized response’ to achieve differentia l - privacy. 

For example, a  mobile phone vendor may want to learn how many of its  phones  
have a  particular uncommon but s ens itive app ins ta lled (e.g., the AIDSinfo app). In 
the s imples t variant of this  approach, each phone s ends  the vendor a  bit indicating 
whether it has  the app ins ta lled, except that the phone flips  its  bit with a  fixed 
probability p < 0.5. By summing a  large number of these noisy bits , the vendor can 
get a  good es timate of the true number of phones  that are running the s ens itive 
app.



Using the ‘Randomized Response’ makes the system robust but it has some downfalls to it. It provides 
rela tively weak privacy guarantees . 

Every bit that each phone transmits  leaks  some private user information to the vendor. In particular, when 
p = 0.1 the vendor has  a  good chance of s eeing the correct (unflipped) user response. Increas ing the 
nois e level p decreases  this  leakage, but adding more nois e a lso decreases  the accuracy of the vendor’s  
final es timate.

An alternative approach to the data-collection problem is  to have the phones  s end encryptions  of their 
bits  to a  s et of s ervers . The s ervers  can sum up the encrypted bits  and decrypt only the final sum. 

However, in gaining this  type of privacy, many secret sharing- based sys tems  s acrifice robus tnes s : a  
malicious  client can s end the s ervers  an encryption of a  large integer value v ins tead of a  zero/ one bit



Introducing Prio

Prio is  a  sys tem for Private aggregation that resolves  tens ion between privacy, 
robus tnes s  and s calability. 

The authors  cla im that Prio provides  privacy in a  way such that no s erver can 
observe the actual data  which is  transmitted by a  client. The s ervers  can only 
acces s  the aggregate values  of the data  being transmitted by the users . 

The authors  a lso cla im that Prio can mainta in robus tnes s  even in the presence of 
unbounded number of malicious  clients  as  long as  one s erver is  not colluded. 



Prio provides scalability as well ! 

When the sys tem is  deployed in 5 s ervers  spread acros s  different parts  of the 
world it imposes  a  mere 5.7 X s lowdown as  compared to a  regular non privacy 
providing sys tem. 

While a  s ta te of the art Non Interactive Zero Knowledge (NIZK) sys tem provides  a  
267 X s lowdown as  compared to the regular non privacy providing sys tem. 

(The tes ts  conducted were to compute private sums  over vectors  of private client 
data)



System Goals
A Prio deployment cons is ts  of a  small number of infras tructure s ervers  and a  very 
large number of clients . In each time epoch, every client i in the sys tem holds  
aprivate value Xi. The goal of the sys tem is  to a llow the s ervers  to compute f 
(x1;.....; xn), for some aggregation function f , in a  way that leaks  as  little as  
pos s ible about each client’s  private Xi values  to the s ervers . 

Encryption: The parties  to a  Prio deployment mus t es tablish pairwise 
authenticated and encrypted channels .Towards  this  end, we as sume the exis tence 
of a  public key infras tructure and the bas ic cryptographic primitives  (CCA-secure 
public-key encryption, digita l s ignatures , etc.) that make s ecure channels  pos s ible.



Anonymity: A data-collection scheme maintains client anonymity if the adversary 
cannot tell which honest client submitted which data value through the system, 
even if the adversary chooses the honest clients’ data values, controls all other 
clients, and controls all but one server. Prio always protects client anonymity. 

Privacy: Prio provides f -privacy, for an aggregation function f , if an adversary, 
who controls any number of clients and all but one server, learns nothing about 
the honest clients’ values Xi, except what she can learn from the value                      
f (X1;... ; Xn) itself. More precisely, given f (X1; ... ; Xn), every adversary controlling 
a proper subset of the servers, along with any number of clients, can simulate its 
view of the protocol run.



Secret Sharing Scheme



Private aggregation
f(x1, …, xN)x1 xNx2

…

Prio is the first system to achieve all four.

x3

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 1000s of 
submissions per second



Warm-up: Computing private sums
Every device i holds  a value xi•

• We want to compute
f(x , …, x  ) = x + … + x1 N 1 N

without learning any users ’ private value xi.

Example: Privately measuring traffic conges tion.

x = 1 if user i is  on the Bay Bridgei

= 0 otherwise

The sum x + … + x  yields  the number of app users1 N
on the Bay Bridge.



Private sums: Server A Server B Server C

A “s traw-man”
scheme

0 0 0

1
Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)
Need all three shares  to recover the shared value.



Private sums: Server A Server B Server C

A “s traw-man”
scheme

15 -12 -2

0 = (-10) + 7 + 3



Private sums: Server A Server B Server C

A “s traw-man”
scheme

15-10+…          -12+7+…          -2+3+…

…



Private sums: Server A Server B Server C

A “s traw-man”
scheme

SA SB SC

S + S + S = 15 + -10 + …A B C



Private sums: Server A Server B Server C

A “s traw-man”
scheme

SA SB SC

S + S + S = 15 + -10 + …A B C
S + S + S = 1 + 0 + … + 1A BC

Servers  learn the
sum of client values
and learn nothing else.





There are two observations we can make about this scheme. First, even this 
s imple s cheme provides  privacy: the s ervers  learn the sum  ∑i xi but they learn 
nothing els e about the client’s  private inputs . 

Second, the s cheme does  not provide robus tnes s . A s ingle malicious  client can 
completely corrupt the protocol output by submitting (for example), a  random 
integer r∊ Fp to each s erver.

So How do we ensure that a client cannot submit a random integer to a server ?



SNIP - Secret Sharing Non Interactive Proofs
Prio s ervers  need a  way to check if the client-submitted value is  well formed. For 
example, in the s implified protocol to calcula te sums , every client is  supposed to 
s end the s ervers  the share of a  value x such that 0 < x <  1.

But s ince each s erver receives  a  random number it cannot check if the s ent bit is  
valid or not. For the s ervers  to know that the bit is  valid they have to communicate 
within themselves  to ensure that the s ent bits  are valid. 

The s ervers  hold a  validation predicate Valid(), and should only accept the client’s  
data  submis s ion if Valid(x) = 1.



A secret-shared non-interactive proof (SNIP) protocol cons is ts  of an interaction 
between a  client (the prover) and multiple s ervers  (the verifiers ). At the s tart of the 
protocol:

– each s erver i holds  a  vector [x]i

– the client holds  the vector x = ∑Pi[x]i 

– all parties  hold an arithmetic circuit representing a  predicate Valid.

(An arithmetic circuit is  like a  boolean circuit except that it uses  finite-field 
multiplication, addition, and multiplication by- cons tant gates , ins tead of boolean 
and, or, and not gates )



Conditions for SNIP: 

The client’s  goal is  to convince the s ervers  that Valid(x) =1, without leaking anything els e about x to the 
s ervers . To do so, the client s ends  a  proof s tring to each s erver. After receiving these proof s trings , the 
s ervers  gos s ip amongs t themselves  and then conclude either that Valid(x) = 1 (the s ervers  “accept x”) or 
not (the s ervers  “reject x”).

Correctnes s : If a ll parties  are hones t, the s ervers  will accept x.

Soundnes s : If a ll s ervers  are hones t, and if Valid(x) , 1,then for a ll malicious  clients , even ones  running 
in super-polynomial time, the s ervers  will reject x with overwhelming probability

Zero - Knowledge: If the client and a t leas t one s erver are hones t, then the s ervers  learn nothing 
about x, except that Valid(x) = 1



The author’s have used SNIP in the Prio System because SNIP reduces the 
number of Server - Server Communications .

To build the SNIP, the author’s  firs t generalize a  “batch verification” technique of 
Ben-Sas son et a l. And then show how a s et of s ervers  can use it to verify an entire 
circuit computation by exchanging a  only few field elements . They implement this  
las t s tep with a  new adaptation of Beaver’s  multi-party computation (MPC) 
protocol to the client/ s erver s etting.



Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs  (SNIPs) 0 0 0

15 -12 -2

The servers  want to ensure that their
shares  sum to 0 or 1
…without learning x.

x = 1



Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs  (SNIPs) 0 0 0

xa xb xc

π a π bx = 1 π c



Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs  (SNIPs) 0 0 0

π , x π , x Πc,  Xca       a b     b

x = 1



Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs  (SNIPs) Ok.             Ok.           

Ok.
0 0 0

π , x π , xa     a b     b

x = 1



Server A Server B Server C
How SNIPs work

xa xb xc

xa

x xb

xc
Idea: Client generates  the
transcripts  that servers
would have observed in a
multi-party computation

See also [IKOS07]



Server A Server B Server C
How SNIPs work

xa xb xc

Servers  check that the transcripts
are valid and cons is tent.

x



Server A Server B Server C
How SNIPs work

π a π b Πc xcxa xb

Servers  check that the transcripts
are valid and cons is tent.

x
Checking a transcript is

much easier than generating it!



Server A Server B Server C
How SNIPs work

O(1) O(1)

O(1)

Da Db Dc

If x is  valid, D + D + D = 0• a b c

If x is  invalid, D + D + D ≠ 0 with high probability• a b c

Servers  run lightweight multi-party computation to check that
D + D + D = 0a b c

If so, servers  accept x is  valid.

[BFO12]



Efficiency of SNIP: 

The remarkable property of this  SNIP cons truction is  that the s erver-to-s erver 
communication cos t grows  neither with the complexity of the verification circuit 
nor with the s ize of the value of number of bits  being used to s tore the data . The 
computation cos t a t the s ervers  is  es s entia lly the s ame as  the cos t for each s erver 
to evaluate the Valid circuit locally. That s a id, the client-to-s erver communication 
cos t does  grow linearly with the s ize of the Valid circuit.



Public-key ops. Communication Slow-
down

M = # of multiplication
gates in Valid(·) circuit Client Server C-to-S    S-to-S

5,000x0         Θ(M)           0           Θ(M)
Θ(M)      Θ(M)        Θ(M)        Θ(M)

Θ(M)     O(1)          O(1)         O(1)

Dishones t-maj. MPC at server[CLOS02], [DPSZ12], …

50xCommits  + NIZKs at server[FS86], [CP92], [CS97], …

500x
at client

Commits  + SNARKs
[GGPR13], [BCGTV13], …

This work: SNIPs              0 0          Θ(M)         O(1)         1x



Gathering Complex Statistics
So far, we have developed the means  to compute private sums  over client-
provided data  and to check an arbitrary validation predicate agains t s ecret-shared 
data . Combining these two ideas  with careful data  encodings , which introduced 
now, a llows  Prio to compute more sophis ticated s ta tis tics  over private client data .

At a  high level, each client firs t encodes  its  private data  value in a  prescribed way, 
and the s ervers  then privately compute the sum of the encodings . Finally, the 
s ervers  can decode the summed encodings  to recover the s ta tis tic of interes t. The 
participants  perform this  encoding and decoding via  a  mechanism we call affine-
aggregatable encodings  (“AFEs”).



Affine Aggregatable Encodings (AFE) 
Each Client i holds  a  value Xi. The s ervers  hold an aggregate function which gives  
a  range of s et of aggregates . 

An AFE gives  an efficient way to encode the data  values  Xi such that it is  pos s ible 
to compute the value f(x1, ….., xn) given only the sum of the encodings . 

AFE cons is ts  of 3 efficient a lgorithms : 

1> Encode: Maps  an input into its  encoding

2> Valid (x): Returns  True if and only if y is  a  valid encoding

3> Decode (σ): Takes  σ = ∑(Encoding(x))



AFE in Prio System: 

The full Prio sys tem computes  f (x1;....; xn) privately as  follows . Each client encodes  its  data  value x us ing 
the AFE Encode routine for the aggregation function f . Then, as  in the s imple s cheme of calcula ting sum, 
every client splits  its  encoding into s  shares  and s ends  one share to each of the s  s ervers . The client uses  
a  SNIP proof to convince the s ervers  that its  encoding s atis fies  the AFE Valid predicate.

Upon receiving a  client’s  submis s ion, the s ervers  verify the SNIP to ensure that the encoding is  well-
formed. If the s ervers  conclude that the encoding is  valid, every s erver adds  the firs t k components  of the 
encoding share to its  local running accumulator. Finally, after collecting valid submis s ions  from many 
clients , every s erver publishes  its  local accumulator, enabling anyone to run the AFE Decode routine to 
compute the final s ta tis tic in the clear. 



Evaluation 
The Authors  have implemented a  Prio prototype in 5,700 lines  of Go and 620 lines  of C (for FFT-based 
polynomial operations , built on the FLINT library ). Unles s  noted otherwise, the evaluations  use an FFT-
friendly 87-bit field. Our s ervers  communicate with each other us ing Go’s  TLS implementation. Clients  
encrypt and s ign their messages  to s ervers  us ing NaCl’s  “box” primitive, which obviates  the need for 
client-to-s erver TLS connections . 

We compare Prio agains t a  private aggregation s cheme that uses  non-interactive zero-knowledge proofs  
(NIZKs) to provide robus tnes s . This  protocol is  s imilar to the “cryptographically verifiable” interactive 
protocol of Kursawe et a l. and has  roughly the s ame cos t, in terms  of exponentia tions  per client reques t, 
as  the “dis tributed decryption” variant of PrivEx [56]. We implement the NIZK scheme us ing a  Go wrapper 
of OpenSSL’s  NIST P256 code 



To investigate the load that Prio places on the servers, we configured five Amazon 
EC2 servers  (eight-core c3.2xlarge machines , Intel Xeon E5-2680 CPUs) in five 
Amazon data  centers  (N. Va., N. Ca., Oregon, Ireland, and Frankfurt) and had them 
run the Prio protocols . To maximize the load on the s ervers , we had each client 
s end a  s tream of pre-generated Prio data  packets  to the s ervers  over a  s ingle TCP 
connection. There is  no need to use TLS on the client-to-s erver Prio connection 
because Prio packets  are encrypted and authenticated a t the application layer and 
can be replay-protected a t the s ervers .





Application Scenarios: 
Cell Signal Strength: A collection of Prio s ervers  can collect the average mobile s ignal s trength in each 
grid cell in a  city without leaking the user’s  location his tory to the aggregator. We can divide the 
geographic area  into a  km ₂ grid—the number of grid cells  depends  on the city’s  s ize and we encode the 
s ignal s trength a t the user’s  present location as  a  four-bit integer. 

Browser Statistics: The Chromium browser uses  the RAPPOR sys tem to gather private information about 
its  users . We can implement a  Prio ins tance for gathering a  subset of these s ta tis tics : average CPU and 
memory usage, a long with the frequency counts  of 16 URL roots .

Health Data Modelling: We implement the AFE for tra ining a  regres s ion model on private client data . We 
use the features  from a  pre-exis ting heart dis ease data  s et (13 features  of varying types : age, s ex, 
choles terol level, etc.) [78] and a  breas t cancer diagnos is  data  s et. 



Using Machine Learning
We can perform an end-to-end evaluation of Prio when the sys tem is  configured to 
tra in a  d-dimens ional leas t squares  regres s ion model on private client-submitted 
data , in which each tra ining example cons is ts  of a  vector of 14-bit integers . These 
integers  are large enough to represent vita l health information, for example.



Deployable Scenarios: 
Deployment in Organizations: Prio lets  an organization compute aggregate data  about its  clients  without 
ever s toring client data  in a  s ingle vulnerable location. The organization could run a ll s  Prio s ervers  its elf, 
which would ensures  data  privacy agains t an a ttacker who compromises  up to s  - 1 s ervers

App Store (Google Playstore or Ios): Mobile application pla tform (e.g., Apple’s  App Store or Google’s  
Play) can run one Prio s erver, and the developer of a  mobile app can run the s econd Prio s erver. This  
a llows  the app developer to collect aggregate user data  without having to bear the risks  of holding these 
data  in the clear.

Private Computing Services: A large enterpris e can contract with an external auditor or a  non-profit (e.g., 
the Electronic Frontier Foundation) to jointly compute aggregate s ta tis tics  over s ens itive cus tomer data  
us ing Prio.



Conclusions
Prio a llows  a  s et of s ervers  to compute aggregate s ta tis tics  over client-provided 
data  while mainta ining client privacy, defending agains t client misbehavior, and 
performing nearly as  well as  data-collection pla tforms  that exhibit neither of these 
s ecurity properties .

One ques tion for future work is  whether it is  pos s ible to efficiently extend Prio to 
support combining client encodings  us ing a  more general function than 
summation, and what more powerful aggregation functions  this  would enable. 
Another task is  to inves tigate the pos s iblity of shorter SNIP proofs : This  
implementation grows  linearly in the s ize of the Valid circuit, but sublinear - s ize 
information-theoretic SNIPs  may be feas ible.



Another area of future research is to make the system safe from colluding 
servers . Right now the sys tem works  well if a t leas t one s erver is  not 
compromised but in a  real world s cenario there is  a  high probability that a lmos t a ll 
the s ervers  will be compromised. The robus tnes s  of the Prio sys tem should be 
s trengthened. 



THANK YOU !! 
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