y

Prio: Private, Robust and Scalable Computation of Aggregat
Statistics

By: Henry Corrigan - Gibbs and Dan Boneh (Stanford University)

Presented By: Avirudh Kaushik
CMPE 253

Smartphones, Cars, Wearable Electronics and many other form of devices which
we use today are transmitting telemetry data and sensor reading to cloud
services.

With such data in hand the cloud services can gather usefulaggregate statistics
over the entire population of devices.

Example:

Navigation app providers collect real-time location data from their users to identify
areas of trac congestion in a city and route drivers along the least-crowded roads.

Fitness tracking services collect information on their users’physical activity so
that each user can see how her fitness regimen compares to the

BUT Il

Motivated Attackers may stealand disclose client’s sensitive information.

Cloud Services may misuse the client’s information for profit.

Intelligence agencies may gather data for targeting or for mass surveillance
purposes.

How Do We Protect our Data from these Attackers ?

Apple and Google fight such attacks by deploying privacy - preserving techniques
which use frandomized response’to achieve differential - privacy.

Forexample,a mobile phone vendor may want to learn how many of its phones
have a particular uncommon but sensitive app installed (e.g., the AIDSinfo app). In
the simplest variant of this approach,each phone sends the vendor a bit indicating
whether it has the app installed, except that the phone flips its bit with a fixed
probability p <0.5. By summing a large number of these noisy bits, the vendor can
geta good estimate of the true number of phones that are running the sensitive

app.

Using the ‘Randomized Response’ makes the system robust but it has some downfalls to it. It provides
relatively weak privacy guarantees.

Every bit that each phone transmits leaks some private user information to the vendor. In particular, when
p =0.1 the vendor has a good chance of seeing the correct (unflipped) user response. Increasing the
noise level p decreases this leakage, but adding more noise also decreases the accuracy of the vendor’s
final estimate.

An alternative approach to the data-collection problem is to have the phones send encryptions of their
bits to a set of servers. The servers can sum up the encrypted bits and decrypt only the final sum.

However, in gaining this type of privacy, many secret sharing-based systems sacrifice robustness: a
malicious client can send the servers an encryption of a large integer value v instead of a zero/one bit

Introducing Prio

Prio is a system for Private aggregation that resolves tension between privacy,
robustness and scalability.

The authors claim that Prio provides privacy in a way such that no server can
observe the actual data which is transmitted by a client. The servers can only
access the aggregate values of the data being transmitted by the users.

The authors also claim that Prio can maintain robustness even in the presence of
unbounded number of malicious clients as long as one serveris not colluded.

Prio provides scalability as well !

When the system is deployed in 5 servers spread across different parts of the
world it imposes a mere 5.7 Xslowdown as compared to a regular non privacy
providing system.

While a state of the art Non Interactive Zero Knowledge (NIZK) system provides a
267 Xslowdown as compared to the regular non privacy providing system.

(The tests conducted were to compute private sums over vectors of private client
data)

System Goals

APrio deployment consists of a small number of infrastructure servers and a very
large number of clients. In each time epoch, every client i in the system holds
aprivate value Xi. The goal of the system is to allow the servers to compute f
(x1;.....;xn), forsome aggregation function f, in a way that leaks as little as
possible about each client’s private Xivalues to the servers.

Encryption: The parties to a Prio deployment must establish pairwise
authenticated and encrypted channels.Towards this end, we assume the existence
of a public key infrastructure and the basic cryptographic primitives (CCA-secure
public-key encryption, digital signatures, etc.) that make secure channels possible.

Anonymity: A data-collection scheme maintains client anonymity if the adversary
cannot tell which honest client submitted which data value through the system,
even if the adversary chooses the honest clients’ data values, controls all other
clients, and controls all but one server. Prio always protects client anonymity.

Privacy: Prio provides f -privacy, for an aggregation function f , if an adversary,
who controls any number of clients and all but one server, learns nothing about
the honest clients’ values Xi, except what she can learn from the value

f (X1;... ; Xn) itself. More precisely, given f (X1; ... ; Xn), every adversary controlling
a proper subset of the servers, along with any number of clients, can simulate its
view of the protocol run.

Secret Sharing Scheme

BN

Private aggregation

1. Exact correctness If all servers are honest, servers learn f(-)

2. Privacy If one server is honest, servers learn only* f(-)
3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 1000s of

submissions per second

Prio is the first system to achieve all four.

Warm-up: Computing private sums

Every device i1 holds a value xi

We want to compute
f(x1 ..., XN)= X0 ... + XN

without learning any users’ private value Xxi.

Example: Privately measuring traffic congestion.

8
xi= 1 ifuseriis on the Bay Bridge IA

= 0 otherwise

The sum xi+ ... + xNyields the number ofapp users
on the Bay Bridge.

Private sums: Server A Server B Server C
A “straw-man”

scheme

Secret sharing
Pick three random “shares” that sum to 1.

1=15+ ?112)+ (- 2) (mod 31)
Need all three shares to recover the shared value.

Private sums: Server A Server B Server C
A “straw-man”

scheme

Private sums: Server A Server B Server C
A “straw-man”

scheme

15-10+... 1247+ 043+

Private sums:
A “straw-man”

scheme

SA S8+ S=15+-10 + ...

Private sums: Server A Server B Server C
A “straw-man”

scheme

Sa S8+ =15+ -10 + ...
=1+0+..+1

Servers learn the
sum of client values

and learn nothing else.

(a) The client sends a share of
its encoded submission and SNIP
proof to each server.

XX LK

(b) The servers validate the client’s
SNIP proof to ensure that the sub-
mission is valid.

(c) If the checks pass, the servers
update their local accumulators
with the client-provided data.

B

Ll

(d) After accumulating many pack-
ets, the servers publish their accu-
mulators to reveal the aggregate.

There are two observations we can make about this scheme. First, even this
simple scheme provides privacy: the servers learn the sum)1 xi1but theylearn
nothing else about the client’s private inputs.

Second, the scheme does not provide robustness. Asingle malicious client can

completely corrupt the protocol output by submitting (for example),a random
integer re Fp to each server.

So How do we ensure that a client cannot submit a random integer to a server ?

SNIP - Secret Sharing Non Interactive Proofs

Prio servers need a way to check if the client-submitted value is well formed. For
example, in the simplified protocol to calculate sums, every client is supposed to
send the servers the share of a value xsuch that 0 <x < 1.

But since each server receives a random number it cannot check if the sent bit is
valid or not. For the servers to know that the bit is valid they have to communicate
within themselves to ensure that the sent bits are valid.

The servers hold a validation predicate Valid(), and should only accept the client’s
data submission if Valid(x) = 1.

A secret-shared non-interactive proof (SNIP) protocol consists of an interaction
between a client (the prover) and multiple servers (the verifiers). At the start of the
protocol:

— each serveriholds a vector [X]i
— the client holds the vector x = YPi[x]i

— all parties hold an arithmetic circuit representing a predicate Valid.

(An arithmetic circuit is like a boolean circuit except that it uses finite-field
multiplication, addition,and multiplication by- constant gates, instead of boolean
and, or,and not gates)

Conditions for SNIP:

The client’s goalis to convince the servers that Valid(x) =1, without leaking anything else about x to the
servers. To do so, the client sends a proof string to each server. After receiving these proof strings, the
servers gossip amongst themselves and then conclude either that Valid(x) =1 (the servers “accept x”) or
not (the servers “reject x”).

Correctness: Ifall parties are honest, the servers will accept x.

Soundness: Ifallservers are honest, and if Valid(x) , 1,then for all malicious clients, even ones running
in super-polynomial time, the servers will reject x with overwhelming probability

Zero - Knowledge: Ifthe client and at least one server are honest, then the servers learn nothing
about x, except that Valid(x) =1

The author’s have used SNIP in the Prio System because SNIP reduces the
number of Server - Server Communications.

To build the SNIP, the author’ first generalize a “batch verification” technique of
Ben-Sasson et al. And then show how a set of servers can use it to verify an entire
circuit computation by exchanging a only few field elements. They implement this
last step with a new adaptation of Beaver’s multi-party computation (MPC)
protocol to the client/server setting.

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A Server B Server C

0 0 0
15 12 2

The servers want to ensure that their)
shares sum to O or 1

...without learning x.

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

OKk.
OKk.

Server B Server C

Server A
How SNIPs work O D D

Xa Xb Xc

-
-t
-
-
-

Wa: Client generates the

transcripts that servers

would have observed in a
multi-party computation
See also [IKOSO07]

Server A Server B Server C

How SNIPs work D
% Xa
A

%Xb %Xc
JAN A

Servers check that the transcript}
are valid and consistent

Server A Server B Server C

How SNIPs work

ﬁ Xa Th| Xb I1c|Xc
AN A\
Servers check that the transcripti

are valid and consistent.

A\

Checking a transcriptis
much easier than generating it!

Server A Server B Server C

How SNIPs work

~
-
L]
......
.....
.......

Da Db Dc

If X Is valid, Dat+ Db+ x=0
If X is invalid, D2+ Dt De#£ O with high probability

Servers run lightweight multi-party computation to check that
Da+ Db+ De= 0

If so, servers accept x is valid.

Efficiency of SNIP:

The remarkable property of this SNIP construction is that the server-to-server
communication cost grows neither with the complexity of the verification circuit
nor with the size of the value of number of bits being used to store the data. The
computation cost at the servers is essentially the same as the cost for each server
to evaluate the Valid circuit locally. That said, the client-to-server communication
cost does grow linearly with the size of the Valid circuit.

Public-key ops. Communication Slow-
M = # of multiplication .
gates in Valid(-) circuit Client Server C-to-S S-to-S down

Dishonest-maj. MPC 0 OM) 0 OM) 5,000x

at server

oM) OM) OM) OM) o,

at server

Commits + SNARKSs oM) 0O@) O(1) O(1) 500x

Commits + NIZKs

at client

This work: SNIPs 0 0 OM) O() 1x

Gathering Complex Statistics

So far,we have developed the means to compute private sums over client-
provided data and to check an arbitrary validation predicate against secret-shared
data. Combining these two ideas with careful data encodings, which introduced
now, allows Prio to compute more sophisticated statistics over private client data.

At a high level,each client first encodes its private data value in a prescribed way,
and the servers then privately compute the sum of the encodings. Finally, the
servers can decode the summed encodings to recover the statistic of interest. The
participants perform this encoding and decoding via a mechanism we call affine-
aggregatable encodings (“AFEs™).

Affine Aggregatable Encodings (AFE)

Each Client i holds a value Xi. The servers hold an aggregate function which gives
a range of set of aggregates.

An AFE gives an efficient way to encode the data values Xisuch that it is possible
to compute the value f(x1,,xn) given only the sum of the encodings.

AFE consists of 3 efficient algorithms:
1>Encode: Maps an input into its encoding

2>Valid (x): Returns True if and only if y is a valid encoding

3>Decode (o0): Takes 6 = Y(Encoding(x))

AFE in Prio System:

The full Prio system computes f (x1;....;xn) privately as follows. Each client encodes its data value x using
the AFE Encode routine for the aggregation function f. Then, as in the simple scheme of calculating sum,
every client splits its encoding into s shares and sends one share to each of the s servers. The client uses
a SNIP proof to convince the servers that its encoding satisfies the AFE Valid predicate.

Upon receiving a client’s submission, the servers verify the SNIP to ensure that the encoding is well-
formed. If the servers conclude that the encoding is valid, every server adds the first k components of the
encoding share to its local running accumulator. Finally, after collecting valid submissions from many
clients, every server publishes its localaccumulator, enabling anyone to run the AFE Decode routine to
compute the final statistic in the clear.

Evaluation

The Authors have implemented a Prio prototype in 5,700 lines of Go and 620 lines of C (for FFT-based
polynomial operations, built on the FLINT library). Unless noted otherwise, the evaluations use an FFT-
friendly 87-bit field. Our servers communicate with each other using Go’ TLS implementation. Clients
encrypt and sign their messages to servers using NaCl’s “box” primitive, which obviates the need for
client-to-server TLS connections.

We compare Prio against a private aggregation scheme that uses non-interactive zero-knowledge proofs
(NIZKs) to provide robustness. This protocolis similar to the “cryptographically verifiable” interactive
protocol of Kursawe et al. and has roughly the same cost, in terms of exponentiations per client request,
as the “distributed decryption” variant of PrivEx [56]. We implement the NIZKscheme using a Go wrapper
of OpenSSL’ NIST P256 code

To investigate the load that Prio places on the servers, we configured five Amazon
EC2 servers (eight-core c3.2xlarge machines, Intel Xeon E5-2680 CPUs) in five
Amazon data centers (N. Va., N. Ca., Oregon, Ireland, and Frankfurt) and had them
run the Prio protocols. To maximize the load on the servers, we had each client
send a stream of pre-generated Prio data packets to the servers over a single TCP
connection. There is no need to use TLS on the client-to-server Prio connection
because Prio packets are encrypted and authenticated at the application layer and
can be replay-protected at the servers.

...,,...;...*...*Nopdvacy

5 10000 5w = o 13 IETI NG robustiess "'.E :
- : 3 1000 & : Z 1MiB - 45 3
§ % gnDMPC d
——— i .-
2 = g rio- S kB L
:5; *-. %No privacy e 100 |- = Sl
g‘ *eNo robustness é E
= - = 4KiB -
rio
3 NIZK E £ 0KiB
| | 1 22 a6 ol 54
2+ 2F g g g g gk e 3 Submission length
Submission length (field elements) Number of servers (same data center) (field elements)

Figure 4: Prio provides the robustness guarantees of ~ Figure 5: Prio is insensitive to the Figure 6: Prio’s use of SNIPs (§4)
zero-knowledge proofs but at 20-50x less cost. number of aggregation servers. reduces bandwidth consumption.

Application Scenarios:

Cell Signal Strength: A collection of Prio servers can collect the average mobile signal strength in each
grid cellin a city without leaking the user’ location history to the aggregator. We can divide the
geographic area into a kmz grid—the number of grid cells depends on the city’s size and we encode the
signal strength at the user’s present location as a four-bit integer.

Browser Statistics: The Chromium browser uses the RAPPOR system to gather private information about
its users. We can implement a Prio instance for gathering a subset of these statistics: average CPU and
memory usage, along with the frequency counts of 16 URL roots.

Health Data Modelling: We implement the AFE for training a regression model on private client data. We
use the features from a pre-existing heart disease data set (13 features of varying types: age, sex,
cholesterol level,etc.) [78] and a breast cancer diagnosis data set.

Using Machine Learning

We can perform an end-to-end evaluation of Prio when the system is configured to
train a d-dimensional least squares regression model on private client-submitted
data, in which each training example consists of a vector of 14-bit integers. These
integers are large enough to represent vital health information, for example.

- Workstation Phone
= q10° Prio
B
=]0_9 No robustness
éﬂ 10~= '/—-."‘-—‘.—‘ Oy I ET RRN TRET RN J
5 10°3 o e 0@ No privacy
2 e T pE
E]074 T -*-..T-.*-.-T.-* I I I

2 6 10 2 6 10

Linear regression dimension

Figure 8: Time for a client to encode a submission
consisting of d-dimensional training example of 14-bit
values for computing a private least-squares regression.

Deployable Scenarios:

Deployment in Organizations: Prio lets an organization compute aggregate data about its clients without
ever storing client data in a single vulnerable location. The organization could run all' s Prio servers itself,
which would ensures data privacy against an attacker who compromises up to s -1 servers

App Store (Google Playstore or los): Mobile application platform (e.g., Apple’s App Store or Google’s
Play) can run one Prio server,and the developer of a mobile app can run the second Prio server. This
allows the app developerto collect aggregate user data without having to bear the risks of holding these
data in the clear.

Private Computing Services: A large enterprise can contract with an external auditor or a non-profit (e.qg.,
the Electronic Frontier Foundation) to jointly compute aggregate statistics over sensitive customer data
using Prio.

Conclusions

Prio allows a set of servers to compute aggregate statistics over client-provided
data while maintaining client privacy, defending against client misbehavior, and
performing nearly as well as data-collection platforms that exhibit neither of these

security properties.

One question for future work is whether it is possible to efficiently extend Prio to
support combining client encodings using a more general function than
summation,and what more powerful aggregation functions this would enable.
Another taskis to investigate the possiblity of shorter SNIP proofs: This
iImplementation grows linearly in the size of the Valid circuit, but sublinear - size
information-theoretic SNIPs may be feasible.

Another area of future research is to make the system safe from colluding
servers. Right now the system works well if at least one server is not

compromised but in a real world scenario there is a high probability that almost all
the servers willbe compromised. The robustness of the Prio system should be

strengthened.

(a) The client sends a share of
its encoded submission and SNIP
proof to each server.

(b) The servers validate the client’s

SNIP proof to ensure that the sub-

mission is valid.

(c) If the checks pass, the servers
update their local accumulators
with the client-provided data.

g

(d) After accumulating many pack-
ets, the servers publish their accu-
mulators to reveal the aggregate.

THANK YOU !l

BN

	Prio: Private, Robust and Scalable Computation of Aggregate Statistics

By: Henry Corrigan - Gibbs and Dan Boneh (Stanford University)
	Slide Number 2
	BUT ! !
	How Do We Protect our Data from these Attackers ?
	Slide Number 5
	Introducing Prio
	Slide Number 7
	System Goals
	Slide Number 9
	 Secret Sharing Scheme
	Private aggregation
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	SNIP - Secret Sharing Non Interactive Proofs
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Gathering Complex Statistics
	Affine Aggregatable Encodings (AFE)
	Slide Number 36
	Evaluation
	Slide Number 38
	Slide Number 39
	Application Scenarios:
	Using Machine Learning
	Deployable Scenarios:
	Conclusions
	Slide Number 44
	THANK YOU !!

