
Prio: Private, Robust and Scalable Computation of Aggregate
Statis tics

By: Henry Corrigan - Gibbs and Dan Boneh (Stanford Univers ity)

Pres ented By: Avirudh Kaus hik
CMPE 253

Smartphones, Cars, Wearable Electronics and many other form of devices which
we use today are transmitting telemetry data and s ensor reading to cloud
s ervices .

With such data in hand the cloud s ervices can gather useful aggregate s ta tis tics
over the entire population of devices .

Example:

Navigation app providers collect real-time location data from their users to identify
areas of trac conges tion in a city and route drivers a long the leas t-crowded roads .

Fitnes s tracking s ervices collect information on their users ’ phys ical activity so
that each user can s ee how her fitnes s regimen compares to the average

BUT ! !

Motivated Attackers may s teal and dis close client’s s ens itive information.

Cloud Services may misuse the client’s information for profit.

Intelligence agencies may gather data for targeting or for mass surveillance
purposes .

How Do We Protect our Data from these Attackers ?

Apple and Google fight such a ttacks by deploying privacy - preserving techniques
which use ‘randomized response’ to achieve differentia l - privacy.

For example, a mobile phone vendor may want to learn how many of its phones
have a particular uncommon but s ens itive app ins ta lled (e.g., the AIDSinfo app). In
the s imples t variant of this approach, each phone s ends the vendor a bit indicating
whether it has the app ins ta lled, except that the phone flips its bit with a fixed
probability p < 0.5. By summing a large number of these noisy bits , the vendor can
get a good es timate of the true number of phones that are running the s ens itive
app.

Using the ‘Randomized Response’ makes the system robust but it has some downfalls to it. It provides
rela tively weak privacy guarantees .

Every bit that each phone transmits leaks some private user information to the vendor. In particular, when
p = 0.1 the vendor has a good chance of s eeing the correct (unflipped) user response. Increas ing the
nois e level p decreases this leakage, but adding more nois e a lso decreases the accuracy of the vendor’s
final es timate.

An alternative approach to the data-collection problem is to have the phones s end encryptions of their
bits to a s et of s ervers . The s ervers can sum up the encrypted bits and decrypt only the final sum.

However, in gaining this type of privacy, many secret sharing- based sys tems s acrifice robus tnes s : a
malicious client can s end the s ervers an encryption of a large integer value v ins tead of a zero/ one bit

Introducing Prio

Prio is a sys tem for Private aggregation that resolves tens ion between privacy,
robus tnes s and s calability.

The authors cla im that Prio provides privacy in a way such that no s erver can
observe the actual data which is transmitted by a client. The s ervers can only
acces s the aggregate values of the data being transmitted by the users .

The authors a lso cla im that Prio can mainta in robus tnes s even in the presence of
unbounded number of malicious clients as long as one s erver is not colluded.

Prio provides scalability as well !

When the sys tem is deployed in 5 s ervers spread acros s different parts of the
world it imposes a mere 5.7 X s lowdown as compared to a regular non privacy
providing sys tem.

While a s ta te of the art Non Interactive Zero Knowledge (NIZK) sys tem provides a
267 X s lowdown as compared to the regular non privacy providing sys tem.

(The tes ts conducted were to compute private sums over vectors of private client
data)

System Goals
A Prio deployment cons is ts of a small number of infras tructure s ervers and a very
large number of clients . In each time epoch, every client i in the sys tem holds
aprivate value Xi. The goal of the sys tem is to a llow the s ervers to compute f
(x1;.....; xn), for some aggregation function f , in a way that leaks as little as
pos s ible about each client’s private Xi values to the s ervers .

Encryption: The parties to a Prio deployment mus t es tablish pairwise
authenticated and encrypted channels .Towards this end, we as sume the exis tence
of a public key infras tructure and the bas ic cryptographic primitives (CCA-secure
public-key encryption, digita l s ignatures , etc.) that make s ecure channels pos s ible.

Anonymity: A data-collection scheme maintains client anonymity if the adversary
cannot tell which honest client submitted which data value through the system,
even if the adversary chooses the honest clients’ data values, controls all other
clients, and controls all but one server. Prio always protects client anonymity.

Privacy: Prio provides f -privacy, for an aggregation function f , if an adversary,
who controls any number of clients and all but one server, learns nothing about
the honest clients’ values Xi, except what she can learn from the value
f (X1;... ; Xn) itself. More precisely, given f (X1; ... ; Xn), every adversary controlling
a proper subset of the servers, along with any number of clients, can simulate its
view of the protocol run.

Secret Sharing Scheme

Private aggregation
f(x1, …, xN)x1 xNx2

…

Prio is the first system to achieve all four.

x3

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 1000s of
submissions per second

Warm-up: Computing private sums
Every device i holds a value xi•

• We want to compute
f(x , …, x) = x + … + x1 N 1 N

without learning any users ’ private value xi.

Example: Privately measuring traffic conges tion.

x = 1 if user i is on the Bay Bridgei

= 0 otherwise

The sum x + … + x yields the number of app users1 N
on the Bay Bridge.

Private sums: Server A Server B Server C

A “s traw-man”
scheme

0 0 0

1
Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)
Need all three shares to recover the shared value.

Private sums: Server A Server B Server C

A “s traw-man”
scheme

15 -12 -2

0 = (-10) + 7 + 3

Private sums: Server A Server B Server C

A “s traw-man”
scheme

15-10+… -12+7+… -2+3+…

…

Private sums: Server A Server B Server C

A “s traw-man”
scheme

SA SB SC

S + S + S = 15 + -10 + …A B C

Private sums: Server A Server B Server C

A “s traw-man”
scheme

SA SB SC

S + S + S = 15 + -10 + …A B C
S + S + S = 1 + 0 + … + 1A BC

Servers learn the
sum of client values
and learn nothing else.

There are two observations we can make about this scheme. First, even this
s imple s cheme provides privacy: the s ervers learn the sum ∑i xi but they learn
nothing els e about the client’s private inputs .

Second, the s cheme does not provide robus tnes s . A s ingle malicious client can
completely corrupt the protocol output by submitting (for example), a random
integer r∊ Fp to each s erver.

So How do we ensure that a client cannot submit a random integer to a server ?

SNIP - Secret Sharing Non Interactive Proofs
Prio s ervers need a way to check if the client-submitted value is well formed. For
example, in the s implified protocol to calcula te sums , every client is supposed to
s end the s ervers the share of a value x such that 0 < x < 1.

But s ince each s erver receives a random number it cannot check if the s ent bit is
valid or not. For the s ervers to know that the bit is valid they have to communicate
within themselves to ensure that the s ent bits are valid.

The s ervers hold a validation predicate Valid(), and should only accept the client’s
data submis s ion if Valid(x) = 1.

A secret-shared non-interactive proof (SNIP) protocol cons is ts of an interaction
between a client (the prover) and multiple s ervers (the verifiers). At the s tart of the
protocol:

– each s erver i holds a vector [x]i

– the client holds the vector x = ∑Pi[x]i

– all parties hold an arithmetic circuit representing a predicate Valid.

(An arithmetic circuit is like a boolean circuit except that it uses finite-field
multiplication, addition, and multiplication by- cons tant gates , ins tead of boolean
and, or, and not gates)

Conditions for SNIP:

The client’s goal is to convince the s ervers that Valid(x) =1, without leaking anything els e about x to the
s ervers . To do so, the client s ends a proof s tring to each s erver. After receiving these proof s trings , the
s ervers gos s ip amongs t themselves and then conclude either that Valid(x) = 1 (the s ervers “accept x”) or
not (the s ervers “reject x”).

Correctnes s : If a ll parties are hones t, the s ervers will accept x.

Soundnes s : If a ll s ervers are hones t, and if Valid(x) , 1,then for a ll malicious clients , even ones running
in super-polynomial time, the s ervers will reject x with overwhelming probability

Zero - Knowledge: If the client and a t leas t one s erver are hones t, then the s ervers learn nothing
about x, except that Valid(x) = 1

The author’s have used SNIP in the Prio System because SNIP reduces the
number of Server - Server Communications .

To build the SNIP, the author’s firs t generalize a “batch verification” technique of
Ben-Sas son et a l. And then show how a s et of s ervers can use it to verify an entire
circuit computation by exchanging a only few field elements . They implement this
las t s tep with a new adaptation of Beaver’s multi-party computation (MPC)
protocol to the client/ s erver s etting.

Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs (SNIPs) 0 0 0

15 -12 -2

The servers want to ensure that their
shares sum to 0 or 1
…without learning x.

x = 1

Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs (SNIPs) 0 0 0

xa xb xc

π a π bx = 1 π c

Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs (SNIPs) 0 0 0

π , x π , x Πc, Xca a b b

x = 1

Server A Server B Server CContribution 1
Secret-shared
non-interactive
proofs (SNIPs) Ok. Ok.

Ok.
0 0 0

π , x π , xa a b b

x = 1

Server A Server B Server C
How SNIPs work

xa xb xc

xa

x xb

xc
Idea: Client generates the
transcripts that servers
would have observed in a
multi-party computation

See also [IKOS07]

Server A Server B Server C
How SNIPs work

xa xb xc

Servers check that the transcripts
are valid and cons is tent.

x

Server A Server B Server C
How SNIPs work

π a π b Πc xcxa xb

Servers check that the transcripts
are valid and cons is tent.

x
Checking a transcript is

much easier than generating it!

Server A Server B Server C
How SNIPs work

O(1) O(1)

O(1)

Da Db Dc

If x is valid, D + D + D = 0• a b c

If x is invalid, D + D + D ≠ 0 with high probability• a b c

Servers run lightweight multi-party computation to check that
D + D + D = 0a b c

If so, servers accept x is valid.

[BFO12]

Efficiency of SNIP:

The remarkable property of this SNIP cons truction is that the s erver-to-s erver
communication cos t grows neither with the complexity of the verification circuit
nor with the s ize of the value of number of bits being used to s tore the data . The
computation cos t a t the s ervers is es s entia lly the s ame as the cos t for each s erver
to evaluate the Valid circuit locally. That s a id, the client-to-s erver communication
cos t does grow linearly with the s ize of the Valid circuit.

Public-key ops. Communication Slow-
down

M = # of multiplication
gates in Valid(·) circuit Client Server C-to-S S-to-S

5,000x0 Θ(M) 0 Θ(M)
Θ(M) Θ(M) Θ(M) Θ(M)

Θ(M) O(1) O(1) O(1)

Dishones t-maj. MPC at server[CLOS02], [DPSZ12], …

50xCommits + NIZKs at server[FS86], [CP92], [CS97], …

500x
at client

Commits + SNARKs
[GGPR13], [BCGTV13], …

This work: SNIPs 0 0 Θ(M) O(1) 1x

Gathering Complex Statistics
So far, we have developed the means to compute private sums over client-
provided data and to check an arbitrary validation predicate agains t s ecret-shared
data . Combining these two ideas with careful data encodings , which introduced
now, a llows Prio to compute more sophis ticated s ta tis tics over private client data .

At a high level, each client firs t encodes its private data value in a prescribed way,
and the s ervers then privately compute the sum of the encodings . Finally, the
s ervers can decode the summed encodings to recover the s ta tis tic of interes t. The
participants perform this encoding and decoding via a mechanism we call affine-
aggregatable encodings (“AFEs”).

Affine Aggregatable Encodings (AFE)
Each Client i holds a value Xi. The s ervers hold an aggregate function which gives
a range of s et of aggregates .

An AFE gives an efficient way to encode the data values Xi such that it is pos s ible
to compute the value f(x1, ….., xn) given only the sum of the encodings .

AFE cons is ts of 3 efficient a lgorithms :

1> Encode: Maps an input into its encoding

2> Valid (x): Returns True if and only if y is a valid encoding

3> Decode (σ): Takes σ = ∑(Encoding(x))

AFE in Prio System:

The full Prio sys tem computes f (x1;....; xn) privately as follows . Each client encodes its data value x us ing
the AFE Encode routine for the aggregation function f . Then, as in the s imple s cheme of calcula ting sum,
every client splits its encoding into s shares and s ends one share to each of the s s ervers . The client uses
a SNIP proof to convince the s ervers that its encoding s atis fies the AFE Valid predicate.

Upon receiving a client’s submis s ion, the s ervers verify the SNIP to ensure that the encoding is well-
formed. If the s ervers conclude that the encoding is valid, every s erver adds the firs t k components of the
encoding share to its local running accumulator. Finally, after collecting valid submis s ions from many
clients , every s erver publishes its local accumulator, enabling anyone to run the AFE Decode routine to
compute the final s ta tis tic in the clear.

Evaluation
The Authors have implemented a Prio prototype in 5,700 lines of Go and 620 lines of C (for FFT-based
polynomial operations , built on the FLINT library). Unles s noted otherwise, the evaluations use an FFT-
friendly 87-bit field. Our s ervers communicate with each other us ing Go’s TLS implementation. Clients
encrypt and s ign their messages to s ervers us ing NaCl’s “box” primitive, which obviates the need for
client-to-s erver TLS connections .

We compare Prio agains t a private aggregation s cheme that uses non-interactive zero-knowledge proofs
(NIZKs) to provide robus tnes s . This protocol is s imilar to the “cryptographically verifiable” interactive
protocol of Kursawe et a l. and has roughly the s ame cos t, in terms of exponentia tions per client reques t,
as the “dis tributed decryption” variant of PrivEx [56]. We implement the NIZK scheme us ing a Go wrapper
of OpenSSL’s NIST P256 code

To investigate the load that Prio places on the servers, we configured five Amazon
EC2 servers (eight-core c3.2xlarge machines , Intel Xeon E5-2680 CPUs) in five
Amazon data centers (N. Va., N. Ca., Oregon, Ireland, and Frankfurt) and had them
run the Prio protocols . To maximize the load on the s ervers , we had each client
s end a s tream of pre-generated Prio data packets to the s ervers over a s ingle TCP
connection. There is no need to use TLS on the client-to-s erver Prio connection
because Prio packets are encrypted and authenticated a t the application layer and
can be replay-protected a t the s ervers .

Application Scenarios:
Cell Signal Strength: A collection of Prio s ervers can collect the average mobile s ignal s trength in each
grid cell in a city without leaking the user’s location his tory to the aggregator. We can divide the
geographic area into a km ₂ grid—the number of grid cells depends on the city’s s ize and we encode the
s ignal s trength a t the user’s present location as a four-bit integer.

Browser Statistics: The Chromium browser uses the RAPPOR sys tem to gather private information about
its users . We can implement a Prio ins tance for gathering a subset of these s ta tis tics : average CPU and
memory usage, a long with the frequency counts of 16 URL roots .

Health Data Modelling: We implement the AFE for tra ining a regres s ion model on private client data . We
use the features from a pre-exis ting heart dis ease data s et (13 features of varying types : age, s ex,
choles terol level, etc.) [78] and a breas t cancer diagnos is data s et.

Using Machine Learning
We can perform an end-to-end evaluation of Prio when the sys tem is configured to
tra in a d-dimens ional leas t squares regres s ion model on private client-submitted
data , in which each tra ining example cons is ts of a vector of 14-bit integers . These
integers are large enough to represent vita l health information, for example.

Deployable Scenarios:
Deployment in Organizations: Prio lets an organization compute aggregate data about its clients without
ever s toring client data in a s ingle vulnerable location. The organization could run a ll s Prio s ervers its elf,
which would ensures data privacy agains t an a ttacker who compromises up to s - 1 s ervers

App Store (Google Playstore or Ios): Mobile application pla tform (e.g., Apple’s App Store or Google’s
Play) can run one Prio s erver, and the developer of a mobile app can run the s econd Prio s erver. This
a llows the app developer to collect aggregate user data without having to bear the risks of holding these
data in the clear.

Private Computing Services: A large enterpris e can contract with an external auditor or a non-profit (e.g.,
the Electronic Frontier Foundation) to jointly compute aggregate s ta tis tics over s ens itive cus tomer data
us ing Prio.

Conclusions
Prio a llows a s et of s ervers to compute aggregate s ta tis tics over client-provided
data while mainta ining client privacy, defending agains t client misbehavior, and
performing nearly as well as data-collection pla tforms that exhibit neither of these
s ecurity properties .

One ques tion for future work is whether it is pos s ible to efficiently extend Prio to
support combining client encodings us ing a more general function than
summation, and what more powerful aggregation functions this would enable.
Another task is to inves tigate the pos s iblity of shorter SNIP proofs : This
implementation grows linearly in the s ize of the Valid circuit, but sublinear - s ize
information-theoretic SNIPs may be feas ible.

Another area of future research is to make the system safe from colluding
servers . Right now the sys tem works well if a t leas t one s erver is not
compromised but in a real world s cenario there is a high probability that a lmos t a ll
the s ervers will be compromised. The robus tnes s of the Prio sys tem should be
s trengthened.

THANK YOU !!

	Prio: Private, Robust and Scalable Computation of Aggregate Statistics By: Henry Corrigan - Gibbs and Dan Boneh (Stanford University)
	Slide Number 2
	BUT ! !
	How Do We Protect our Data from these Attackers ?
	Slide Number 5
	Introducing Prio
	Slide Number 7
	System Goals
	Slide Number 9
	 Secret Sharing Scheme
	Private aggregation
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	SNIP - Secret Sharing Non Interactive Proofs
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Gathering Complex Statistics
	Affine Aggregatable Encodings (AFE)
	Slide Number 36
	Evaluation
	Slide Number 38
	Slide Number 39
	Application Scenarios:
	Using Machine Learning
	Deployable Scenarios:
	Conclusions
	Slide Number 44
	THANK YOU !!

